
Compilation of Julia code for 
deployment in Model-Based 
Engineering workflows.

Fredrik Bagge Carlson, MODPROD February, 2025



Outline

● What is Julia?
● The Julia compilation pipeline
● Ahead-of-time compilation of Julia

○ Historically
○ Now and near future

● Demos
○ Executable (state estimation)
○ Shared library (PID-controller library)

● Current limitations



Julia Language



4

: A first look?



5

: Specialization by compiler



Julia compiler pipeline

Source
Type 

inference, 
optimization

LLVM IR 
Generation

LLVM 
optimization

Native code
(x86_64, 

ARM etc.)

Julia normally compiles “just ahead of time”



Ahead-of-time (AOT) compilation and distribution 
of Julia programs

Historically, either of:

● Distribute the source code
● Package everything into a huge binary

○ Package and application source
○ Compiled code
○ Julia compiler
○ LLVM compiler
○ Julia runtime

Benefits:
👍 All language features are 

intact
👍 Self contained

Drawbacks:
👎 Source distribution requires 

Julia install
👎 Not guaranteed to be AOT 

compiled
👎 The generated artifact is 

huge (GB)
👎 Not (always) relocatable



Ahead-of-time (AOT) compilation and distribution 
of Julia programs

Now and near future:

● Remove everything that isn’t 
reachable from entry point 
(trimming)

● Complain if uncompilable 
○ Eval
○ Types unknown

Benefits:
👍 May produce smallish binaries 

(~900KB hello world)
👍 Guarantees AOT compilation
👍 Most language features intact (no 

eval, no unbounded dispatch)

Current drawbacks:
👎 Not yet released
👎 No easy cross-compilation
👎 Not yet self contained (link to 

libjulia)



Would this be okay?

Ahead-of-time (AOT) compilation and distribution 
of Julia programs



Demos
● Executable (State estimation)

○ Equation-based model
○ State estimator
○ Executable that loads a data file from disk and performs filtering

● Shared library (PID controller)
○ Julia PID controller library
○ Expose library functions with C-compatible interface
○ Compile shared library
○ Load library from C program and call functions



Model-based state estimation
Demonstrate use of

Equation-based modeling with ModelingToolkit
(Could be a model from OpenModelica)

+
Off-the-shelf Julia library for state estimation

↓
Executable

Source available: https://github.com/baggepinnen/static_kalman



Model-based state estimation

Source available: https://github.com/baggepinnen/static_kalman

Generate Julia code



Model-based state estimation

Binary size: 3.5MB
Runtime: 27ms
Of which filtering is 62µs

Include 
generated Julia 

code

Define state 
estimator

Discretize



Julia package as shared library
Demonstrate use of

Off-the-shelf julia package for PID controllers

↓

Executable

↓
Loaded and called from C program

Source available: https://github.com/JuliaControl/DiscretePIDs.jl



Julia package as shared library
Expose library functions as C-callable (entrypoints)

Source available: https://github.com/JuliaControl/DiscretePIDs.jl

Shared-object file size: 
1.7MB



Julia package as shared library
Load compiled library and call from C

Source available: https://github.com/JuliaControl/DiscretePIDs.jl

Compile and link to libjulia 

gcc -o pid_program test_juliac_pid.c -I …/julia/usr/include/julia 
-L…/julia/usr/lib -ljulia -ldl

For loading compiled 
library and Julia runtime

(not yet fully self contained)



Deployment on a Raspberry Pi
● The same workflows can be performed on a Raspberry Pi (or 

similar device)
● Binary runtime (state estimation) about 4x slower on RPi 
● Currently no first-class support for cross compilation 
● Compilation in an emulator is a viable option in some cases



Current limitations
● Julia runtime still required → only works on supported platforms
✅ Traditional OS (Linux, Win, MacOS)
✅ x86-64
✅ ARMv8
🟡 ARMv7
🟡 RISC-V
🟥 Real-time OSes
🧙 Arduino?

● Runtime is not yet trimmed
● Not released
● Cross compilation
● All of these limitations are being worked on



Should you use this today?
Are you a Julia hacker?

✅ Maybe
❌ Hold off until release



Summary
● Julia can now be ahead-of-time compiled to a small binary
● Most features of Julia are intact while doing so
● Restrictions around too much dynamism
● Not yet released in stable julia version (v1.12 feature freeze was a month ago)

● Impact on size of Julia FMUs


